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Abstract

Thermally conductive composite adhesives are desirable in many industrial ap-

plications, including computers, microelectronics, machinery and appliances. These

composite adhesives are formed when a �ller particle of high conductivity is added to

a base adhesive. Typically, adhesives are poor thermal conductors. A thorough under-

standing of heat transfer through a composite adhesive would aid in the design of an

eÆcient thermally conductive composite adhesive.

In this work, we provide theoretical foundations for use in design of thermally

conductive composite adhesives. For proof of concept, we consider a two dimensional

model.

We prove existence, uniqueness and continuous dependence theorems for the model.

We formulate a probability based parameter estimation problem and present numerical

results.

Motivated by the results of the parameter estimation problem, we are led to derive

sensitivity equations for our system. We investigate the sensitivity of composite sili-

cones with respect to the thermal conductivity of both the base silicone polymer and

the �ller particles. Numerical results of this investigation are also presented.

Keywords: thermal conductivity, composite adhesives, well-posedness, inverse prob-
lems, sensitivity equations
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1 Introduction and Motivation

Adhesives such as epoxies, gels, and greases have numerous commercial and industrial ap-

plications. They are found in computers, machinery, home appliances, etc. In general, these

adhesives are very poor conductors while in many applications it would be advantageous for

them to possess signi�cant thermal conductivity. Consequently, researchers have been study-

ing thermally conductive composites or �lled materials: base materials such as epoxies, gels,

and greases, which are �lled with thermally conductive particles. Filler particles, such as

diamond dust, carbon �bers, or aluminum particles, with higher thermal conductivities are

added to create a composite material that is a better thermal conductor than the original

material. These thermally conductive composites could then replace the poorly conduct-

ing adhesives currently in use in applications such as microelectronics, circuit boards, heat

exchangers, machinery, and appliances.

Adding particles with a high thermal conductivity has not had as signi�cant an impact

on the overall or e�ective thermal conductivity of the composite as anticipated. In order to

address this issue, we investigate design methodologies for these composite materials. Our

goal is an improved understanding of heat transfer through a composite material and an

increased knowledge of the impact the composite design has on this thermal process.

The goal in creating a thermally conductive composite is a signi�cant increase in the

thermal conductivity of the composite over the thermal conductivity of the un�lled material.

There are several design considerations, including the choice of particle, the particle geometry

and the size and shape of the particles. We concentrate our presentation here on a composite

material with a �xed geometry and consider the role of the particles. (For the e�ects of

varying the geometry see [8].)

In the sections below we present a mathematical model to describe the heat transfer

through a composite silicone. We show that the mathematical model is well-posed. In par-

ticular, we show there exist unique weak solutions to this mathematical model. Furthermore,

these solutions are continuously dependent on the initial conditions, forcing function, and

parameters.
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We formulate a probability based parameter estimation problem based on results in [1]

where the parameters are viewed as realizations of random variables. This approach allows

for uncertainty in the model parameters as well as the data, e.g., see [9, 12]. We introduce

a formulation for this approach in the context of our model and present some numerical

results.

Finally, we rigorously derive sensitivity equations for our mathematical model. We then

numerically solve these equations and show that the model is more sensitive to some model

parameters than others. These results provide insight into the results of our parameter

estimation problem.

The silicone system used as the base for our composite silicone has a thermal conductivity

of approximately 0:12 W/mK (Watts per meter-Kelvin). The base silicone consists of a vinyl-

functional siloxane (commonly referred to as a resin or polymer) and a hydride-functional

siloxane (commonly called a crosslinker). When these two liquid components are cured the

hydride adds to the double bond in the vinyl group to form a linkage

SiCH=CH2 + H�Si ���� > SiCH2�CH2Si

which is suÆcient to form a solid. For ease of reference, we refer to the silicone system

as the silicone polymer. In hopes of creating a composite silicone with a higher thermal

conductivity, �ller particles with a greater thermal conductivity are added to the silicone

polymer. A wide variety of �ller particles, including aluminum particles, carbon �bers and

diamond dust, can be added in varying concentrations. For our sample composite silicone,

we use Grade 6 aluminum which has a thermal conductivity of 217 W/mK and concentrate

here on composites with 25% by volume concentration of particles.

There are a variety of methods available to measure thermal conductivity. For our data

collection we employed a Holometrix Model Micro
ash. The Micro
ash uses a laser 
ash

method which allows measurements to be taken at room temperature. The software used in

conjunction with the machine is Micro
ash-RT, version 2.25.

This method works well for materials of uniform density, i.e., non-composites. However,

we are using composite materials and it is known that this results only in some measure of
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the \average" or \e�ective" thermal properties of the composite material. It is diÆcult to

answer design questions about the composite silicone based only on these e�ective properties

of the composite.

Analysis on a single test piece yields the \e�ective" di�usivity, speci�c heat and thermal

conductivity of the sample based on an average of three trials. In addition to these three

averaged values, the Micro
ash outputs the di�usivity, speci�c heat and thermal conductivity

of each trial and the voltage at eight di�erent times for each of the three trials. The eight

times recorded are the time in milliseconds (msecs) to reach 0, 20, 30, 40, 50, 70, 80, and

100 percent of the temperature rise (equivalently voltage rise, see [8]). For further details on

the data collection method and experimental results, see [8].

2 Problem Formulation

2.1 Model

Since the fundamental process of our problem is heat transfer through the composite silicone,

the foundation of our model is the transient heat equation [11]. While keeping the compo-

sition of the composite silicone and the data collection process in mind, it is necessary to

make a few simplifying assumptions. First, we assume all heat from the heat source (a laser)


ows through the composite silicone and into the heat sink (an IR detector), as depicted in

Figure 1. Second, since the composite silicone slice is very thin, we assume there is no heat

loss through the sides. Thus in our model we assume the sides of the composite silicone are

insulated. We use a 
ux boundary condition to describe the heating on the source side of

the composite silicone due to the laser. On the sink side of the composite silicone, where

the IR detector is located, we use Newton cooling to describe the boundary condition since

that face of the composite silicone is in contact with the ambient air.

However, for our initial study of the problem we elected to reduce the three dimensional

model to a two dimensional model (solely to facilitate numerous computational simulations).

The two dimensional model can be thought of as a very thin interior slice (in the direction
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Figure 1: Three dimensional heat transfer model

of the heat 
ow) of the three dimensional model as depicted in Figure 2. We assume the

composite silicone is signi�cantly thicker in the direction normal to the slice compared to the

slice itself, so all heat will 
ow directly through the composite silicone with negligible lateral

dissipation. For our experimental test pieces, the diameters of the pieces were much greater

than the thickness of the piece, so our assumption is reasonable. Furthermore we assume

the geometry of the composite silicone is uniform normal to the slice, provided we are in the

center of the composite silicone away from lateral edges. Thus the two dimensional model

heat transport properties should closely resemble that of the three dimensional model.
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Heat Sink

�

�

�

��

� �

�

�

�
-

Heat Source

Composite Silicone

Heat Sink

Figure 2: Two dimensional heat transfer model

We will continue to assume the sides of the composite silicone are insulated. The bound-

ary at the heat source will be a Neumann boundary condition given by the heat 
ux due to

the laser and the boundary at the heat sink will still be described by Newton cooling.
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It is clear that the �ller particles will not be uniform in size, and will most likely be

randomly dispersed throughout the base silicone polymer. However, it will be necessary to

know the size of each particle and the arrangement of the particles in order to determine

the value of k , �, and cp at a particular point in the composite silicone. To facilitate our

modeling, we will assume the �ller particles are �xed and comprise the appropriate volume

percent of the composite silicone and that there is a known particle arrangement.

We will denote the ambient temperature by T1 and the initial temperature of the com-

posite silicone by u0. We denote the Newton cooling constant by h, and de�ne S0(t) to be

the 
ux due to the heat source. Thus if u(t; �z) is the composite silicone temperature at a

given time t and coordinate �z, we have the following system describing the temperature in

the sample: 8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�(z)cp(z) _u(t; z) = r � (k(z)ru(t; z)); z 2 


k(z)@u
@n
(t; z)j
4 = S0(t) (source)

k(z)@u
@n
(t; z)j
2 = h(T1 � u(t; z))j
2 (sink)

k(z)@u
@n
(t; z)j
1 = 0

k(z)@u
@n
(t; z)j
3 = 0

u(0; z) = �(z); z 2 


(1)

where 
 = [� c1

2
; c1
2
]� [� c2

2
; c2
2
] and t 2 [0; T ], and _u = @u

@t
, with c1, c2, and T assumed �nite,

positive constants. Let @
 = 
1 [ 
2 [ 
3 [ 
4 where


1(s) = f(c1
2
; s) : s 2 [�c2

2
;
c2

2
]g;


2(s) = f(s; c2
2
) : s 2 [�c1

2
;
c1

2
]g;


3(s) = f(�c1
2
; s) : s 2 [�c2

2
;
c2

2
]g; and


4(s) = f(s;�c2
2
) : s 2 [�c1

2
;
c1

2
]g;

as depicted in Figure 3. We de�ne 
s � 
 to be the region occupied by the silicone and


p � 
 to be the region occupied by the �ller particles. Note 
s \
p = ; and 
s [
p = 
.

It is important to note that �, cp and k are all spatially dependent. They will have one
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Figure 3: Two dimensional composite silicone slice

value in the silicone polymer and another value in the �ller particles. For the two dimensional

case investigated computationally below and in [8], we assumed all particles were circles in

a known, although not necessarily uniform, particle arrangement.

2.2 Matlab PDE Toolbox Solutions

The major bene�t of using the two dimensional model is that we can use Matlab's Partial

Di�erential Equation Toolbox (PDE Toolbox) to solve (1). Matlab's PDE Toolbox can solve

two dimensional parabolic partial di�erential equations. In order to solve (1) using the PDE

Toolbox we must provide the boundary conditions, the PDE coeÆcients and the composite

silicone geometry. The PDE Toolbox generates a triangular mesh using the Delaunay tri-

angulation algorithm and numerically solves the PDE using the �nite element method with

linear elements (the only type of elements the PDE Toolbox employs). The PDE Toolbox

automatically de�nes the mesh, although the user has the option to re�ne the mesh. See

[14] for further information about Matlab's Partial Di�erential Equation Toolbox.

Matlab's PDE Toolbox allowed us to carry out simulations for many di�erent geometry

con�gurations. For example, geometries with uniform, shifted and random geometries can
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be considered. We can (and did) also consider geometries of both same sized and varying

sized particles. A summary of our numerical simulations for di�erent geometries (random,

�xed, etc.) and di�erent distributions of particle size is given in [8].

For the numerical results we present in this paper, we assume all aluminum �ller particles

in the two dimensional model are circles of uniform diameter arranged in a uniform geometry,

i.e., the particles are uniformly spaced and aligned in rows. Since our sample composite

silicone contains Grade 6 aluminum particles we will use the mean diameter of the volume

distribution provided by the aluminum supplier, 24:14 � (microns), as the diameter of each

particle. We will concentrate on the 25% by volume composite silicone, but all ideas presented

here extend in a natural way to composite silicones with di�erent compositions.

The silicone polymer used as the base for the composite silicone wets well, meaning it

forms a thin �lm around each of the particles. The �lm formed around each particle is

estimated to be approximately 50 angstroms. Hence, we assume each particle is separated

by a minimum distance of 0:01 microns and that no particles touch the boundary of the

composite silicone slice which is 321:5 � wide and 1638 � high, i.e., c1 = 321:5 and c2 = 1638

in the two dimensional model of the previous section. The composite silicone slice we use

in computations reported on below contains 288 circles of diameter 24:14 � in a uniform

arrangement representing the 25% by area aluminum particles used by the PDE Toolbox as

the geometry for our composite silicone.

We note that k , � and cp are all spatially dependent. In order to di�erentiate between

the value of each parameter in the silicone versus the aluminum particle we will quantify

this variability as follows: for z 2 
, the value for each parameter is given by:

k(z) =

8<
:
ks z 2 
s

kp z 2 
p

�(z) =

8<
:
�s z 2 
s

�p z 2 
p

7



and

cp(z) =

8<
:
cps z 2 
s

cpp z 2 
p;

where ks; kp; �s; �p; cps; and cpp are all �nite constants. Observe that k , �, and cp are each

functions from 
 to R and each is piecewise constant.

We assume the composite silicone was initially at the ambient temperature and the

temperature was uniform throughout the sample. Thus we set �(z) = T1. We choose

the Newton constant to represent air cooling as we have in our model. The exact model

parameters used in the simulations reported here are in Table 1. In the table, g=cm3 is

grams per cubic centimeter and J/gK is Joules per gram-Kelvin.

ks 0:12 W=mK

kp 217 W=mK

�s 1 g=cm3

�p 2:7 g=cm3

cps 1:55 J=gK

cpp 0:90 J=gK

T1 296:15 K

h 350

S` 4:32� 107 W=m2

Table 1: Model parameters

The source 
ux will approximate the energy in the laser pulse. The laser energy as

con�gured in the Micro
ash is approximately 7 J. For our testing there is a 20% �lter

screen, so the actual laser energy is approximately 1:4 J. In addition, since the pieces are

graphite coated, technicians at Holometrix estimate there is an additional 20% energy loss.

Given that the length of the laser pulse is 330 microseconds and the diameter of the laser is

10 mm, we calculate the 
ux due to the laser pulse to be S` = 4:32� 107 W=m2 (Watts per
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meter squared). Thus the source 
ux is given by

S0(t) =

8<
:
S` 0 � t � tp

0 tp < t;

where tp = 0:000330 seconds. While we believe this is a high estimate, it is suÆcient for our

purposes here and in [8].

3 Well-Posedness

3.1 Problem in Variational Form

In this section we investigate theoretical issues relating to the two dimensional model for-

mulated in Section 2. We de�ne a class of abstract parabolic equations and establish that

this class of equations is well-posed. Furthermore, we verify that our two dimensional heat

transfer model �ts this class of equations for a large number of examples with di�erent

particle shapes, size distributions and geometry. These results guarantee the existence and

uniqueness of weak solutions to our model as well as continuous dependence on the initial

data, forcing function and model parameters for most examples of interest. We note here

that these theoretical results (and those of Sections 4 and 5) are easily extended to three

dimensions, but we choose to concentrate on the two dimensional problem since it relates to

our use of Matlab's PDE Toolbox.

3.1.1 Preliminaries

We begin with the two dimensional model (1) from Section 2 with rather general but �xed

particle shapes, sizes and geometry of location. We de�ne for simplicity of notation g(z) =

�(z)cp(z) throughout and assume there exists constants RL and RU such that

0 < RL � g(z) � RU <1 (2)

and constants KL and KU such that

0 < KL � k(z) � KU <1 (3)
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for all z 2 
. Furthermore we assume h is a �nite, positive constant.

De�ne H = L2(
) with the usual L2 inner product, h�; �iL2, and de�ne H = L2(
) with

the weighted inner product h�; �iH = hg �; �iL2. Note the norms generated by the H-inner

product and the L2-inner product are equivalent. Let V = H1(
) with inner product

h�;  iV = hr�;r iL2 + h�;  iL2

for �;  2 V and let V = H1(
) with inner product

h�;  iV = hr�;r iH + h�;  iL2 (4)

for �;  2 V. We will want to use the following equivalent representation of the inner product

in V:

h�;  iF � hr�;r iH +

Z

2

(Tr2 �)(z)(Tr2  )(z) dS2 (5)

where Trj : H1(
) ! H
1

2 (
j) is the continuous trace operator mapping f 2 H1(
) !
H

1

2 (
j) � H0(
j) = L2(
j), on 
j, j = 1; 2; 3; 4, with (Trj f)(z) = f(z)j
j . The following

theorem from Maz'ja [16, p. 27] shows the norms generated by these inner products are

equivalent:

Theorem 3.1 (Maz'ja) Let 
 be a bounded domain in R
n such that L`

p
(
) � Lp(
). Let

F(u) be a continuous functional in W `

p
(
), F(�`�1) 6= 0 for any nonzero polynomial �`�1 of

degree not higher than `� 1. Then the norm

jjr̀ ujjLp(
) + F(u)

is equivalent to the norm in W `

p
(
).

Here L`
p
(
) is the space of distributions on 
 with derivatives of order ` in Lp(
), and

W `

p
(
) = L`

p
(
) \ Lp(
). Also r̀ = fD�g, where j�j = ` for � a multi-index (�1; � � � ; �n)

with D� = D�1
x1
� � �D�n

xn
. (Note for our problem W `

p
(
) = W 1

2 (
) = H1(
), i.e., p = 2 and

` = 1 and n = 2.) If we de�ne

F(u) =

Z
�

jtr(u)j2dx

10



where � � @
 and tr is the continuous trace operator mapping u 2 H1(
) ! H
1

2 (@
) �
H0(@
) = L2(@
), then we have

jF(u)j =
Z
�

jtr(u)j2dx

�
Z
@


jtr(u)j2dx

� Kjjujj2
H1(
)

and hence F is a continuous functional on H1(
). Also note that taking ` = 1, �`�1 = c,

where c is any non-zero constant, and

F(c) =

Z
�

jtr(c)j2dx

is non-zero if and only if the measure of � is non-zero. Thus the norms generated by the

inner products (4), (5) are equivalent by Theorem 3.1 and there are �nite, positive constants

ML, MU such that

MLjj�jj2F � jj�jj2V �MU jj�jj2F (6)

for all � 2 V where

jj�jj2F = jjr�jj2H +

Z

2

jTr2 �j2 dS2; (7)

is the norm generated by (5).

De�ne a sesquilinear form � : V� V! R by

�(�;  ) = h1
g
kr�;r iH + h

Z

2

(Tr2 �)(z)(Tr2  )(z) dS2: (8)

Note � de�nes an operator A 2 L (V;V�) where hA�;  iV�;V = �(�;  ) and L (V;V�) is the

set of all bounded, linear functionals from V to V�. This follows due to the continuity of �

on V� V guaranteed by (6) (see (12) below).

De�ne F : [0; T ]! V� by

[F (t)]( ) = hT1

Z

2

(Tr2  )(z) dS2 + S0(t)

Z

4

(Tr4  )(z) dS4 (9)

for  2 V.
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3.1.2 Weak Solution

Suppose u solves

_u+ Au = F in V�; (10)

i.e., for all  2 V,
h _u+ Au� F;  iV�;V = 0:

By de�nition we have

h _u(t);  iV�;V = h�Au(t);  iV�;V + hF;  iV�;V

= h�1

g
kru(t);r iH � h

Z

2

(Tr2 u(t))(z)(Tr2  )(z) dS2

+ hT1

Z

2

(Tr2  )(z) dS2 + S0(t)

Z

4

(Tr4  )(z) dS4

= h�kru(t);r iL2 � h

Z

2

((Tr2 u(t))(z)� T1)(Tr2  )(z) dS2

+ S0(t)

Z

4

(Tr4  )(z) dS4:

Now, if u 2 V and kru 2 V , using the Divergence Theorem and the vector identity

r � (k(z)rs(t; z) (z)) = (r � (k(z)rs(t; z)) (z) + k(z)(rs(t; z) � r (z))

one can argue that a solution u of (10) (if it exists) is a weak solution of (1). That is, (10)

is the weak form of (1).

3.2 Well-Posedness (Existence, Uniqueness, Continuous Depen-

dence on Data)

We establish existence of solutions to parabolic systems of the form

8<
:
_u+ Au = F in V�

u(0) = u0:
(11)
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We will use the Gelfand triple V ,! H �= H� ,! V� where the embedding V ,! H is dense

and continuous with jj�jjH � cjj�jjV for all � 2 V and some �nite constant c > 0. Note the

desired inequality holds:

jj�jj2V = hr�;r�iH + h�; �iL2
� h�; �iL2

= h1
g
�; �iH

� R�1
U
jj�jj2H

so in fact jj�jjH � p
RU jj�jjV.

We shall argue and then use two standard conditions on � de�ned by (8):

(1) The form � is V-bounded: for all �;  2 V, there exists a B <1 such that

j�(�;  )j � Bjj�jjVjj jjV: (12)

(2) The form � is V-coercive: for all � 2 V, there exists a C > 0 such that

j�(�; �)j � Cjj�jj2V: (13)

We also �nd that if the source S0 is in L2(0; T ), then the forcing term F de�ned by (9)

satis�es

F 2 L2(0; T ;V�): (14)

To show that � of (8) satis�es (12), we use (2), (3), and (7):

j�(�;  )j = jh1
g
kr�;r iH + h

Z

2

(Tr2 �)(z)(Tr2  )(z) dS2j

� maxfR�1
L
KU ; hg(jjr�jjHjjr jjH + jjTr2 �jj
2jjTr2  jj
2)

� maxfR�1
L
KU ; hg(jjr�jjH + jjTr2 �jj
2)(jjr jjH + jjTr2  jj
2)

� maxfR�1
L
KU ; hg(2jj�jjF)(2jj jjF)

13



� 4M�1
L

maxfR�1
L
KU ; hgjj�jjVjj jjV

where jjf jj2

2
=

Z

2

jf(z)j2 dS2 for any f 2 H 1

2 (
2). Thus � is V-bounded.

Similarly, for (13) we have the following:

�(�; �) = h1
g
kr�;r�iH + h

Z

2

(Tr2 �)(z)(Tr2 �)(z) dS2

� minfR�1
U
KL; hg(jjr�jj2H +

Z

2

j(Tr2 �)(z)j2 dS2)

� minfR�1
U
KL; hgM�1

U
jj�jj2V

so � is V-coercive.

In order to see that (14) holds, recall Tr2 : V = H1(
) ! H
1

2 (
2). So, for any  2 V,
Tr2  2 H

1

2 (
2) � L2(
2), and hence

Z

2

Tr2  dS2 2 R. Thus  ! R

2
Tr2  dS2 is

a continuous mapping from V ! R, i.e., it is in V�. If S0 2 L2(0; T ) (which we assume

throughout), then F 2 L2(0; T ;V�).

Given the above hypothesis, the system (11) is equivalently written
8<
:
h _u(t);  i+ �(u(t);  ) = hF (t);  i
u(0) = u0

(15)

for  2 V where the duality product h�; �i is h�; �iV�;V.
Assume for the moment that (15) has a solution u. We derive an a priori bound. Let

 = u(t) for a �xed t. Substituting into (15) we obtain

h _u(t); u(t)iV�;V + �(u(t); u(t)) = hF (t); u(t)iV�;V

and since h _u(t); u(t)iV�;V = 1

2

d

dt
fjju(t)jj2Hg we see

1

2

d

dt
fjju(t)jj2Hg+ �(u(t); u(t)) = hF (t); u(t)iV�;V

for any t in a given interval [0; T ]. Integrating from 0 to t we have
Z

t

0

f1
2

d

d�
fjju(�)jj2Hg+ �(u(�); u(�))g d� =

Z
t

0

hF (�); u(�)iV�;V d�

14



and thus

1

2
jju(t)jj2H �

1

2
jju(0)jj2H +

Z
t

0

�(u(�); u(�)) d� =

Z
t

0

hF (�); u(�)iV�;V d�:

Using (13), the Cauchy Schwartz inequality and the fact 2ab � a2 + b2, we have

jju(t)jj2H + 2C

Z
t

0

jju(�)jj2V d� � jju0jj2H + 2j
Z

t

0

hF (�); u(�)iV�;V d�j

� jju0jj2H + 2

Z
t

0

jjF (�)jjV�jju(�)jjV d�

� jju0jj2H +
1

C

Z
t

0

jjF (�)jj2V� d� + C

Z
t

0

jju(�)jj2V d�

and hence

jju(t)jj2H + C

Z
t

0

jju(�)jj2V d� � jju0jj2H +
1

C

Z
t

0

jjF (�)jj2V� d�: (16)

Thus

jju(t)jj2H + C

Z
t

0

jju(�)jj2V d� � Ĉ

where Ĉ = Ĉ(jju0jjH; C; jjF jjL2(0;T ;V�)).
The a priori bound arguments are the basis of existence as well as continuous dependence.

Using them along with quite standard arguments (see Chapter III of [13], x26 of [23]), we

can establish the desired existence and uniqueness (detailed arguments are given in [8]).

Theorem 3.2 Under assumptions (12), (13), and (14), for u0 2 V , there exists a solu-

tion of (11) (and hence a weak solution of (1)) with u 2 L2(0; T ;V) and _u 2 L2(0; T ;V�).

Furthermore, this solution is unique.

In a similar standard approach (again see [8, 13, 23]) one can establish continuous de-

pendence of solutions on initial data and forcing function. We only recall the ideas here.

Suppose u = u( � ; u0; F ) is a weak solution of

8<
:
_u+ Au = F

u(0) = u0

(17)

15



and suppose un = un( � ; un0; Fn) is a weak solution of

8<
:
_un + Aun = Fn

un(0) = un0

(18)

with un0 ! u0 in H and Fn ! F in L2(0; T ;V�). Given systems (17) and (18) we see

8<
:
h _u� _un;  i+ �(u� un;  ) = hF (t)� Fn(t);  i
u(0)� un(0) = u0 � un0

(19)

for all  2 V. If we let  = u(t)�un(t) in (19) and use the same arguments as in establishing

(16), we see

jju(t)� un(t)jj2H + C

Z
t

0

jju(�)� un(�)jj2V d� � jju0 � un0jj2H +
1

C

Z
t

0

jjF (�)� Fn(�)jj2V� d�

and thus

jju(t)� un(t)jj2H + C

Z
t

0

jj(�)� un(�)jj2V d� � jju0 � un0jj2H +
1

C
jjF � FnjjL2(0;T ;V�):

Thus given that un0 ! u0 in H and Fn ! F in L2(0; T ;V�), we see u ! un in C(0; T ;H)

and also in L2(0; T ;V). Indeed we have

Theorem 3.3 The mapping (u0; F ) ! u( � ; u0; F ), where u( � ; u0; F ) is a solution to (11)

is continuous from H� L2(0; T ;V�) to C(0; T ;H) \ L2(0; T ;V).

We remark that one can actually establish the somewhat stronger continuity from H �
L2(0; T ;V�) to U = L2(0; T ;V) \H1(0; T ;V�), see [13, 23] for details.

3.3 Continuous Dependence on Parameters

3.3.1 Continuous Dependence on k and h

Suppose u( � ; k ; h) is a weak solution of

8<
:
_u+ Au = F

u(0) = u0

(20)
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and let un( � ; kn; hn) be a weak solution of

8<
:
_un + Anun = Fn

un(0) = u0

(21)

where

hAn�;  iV�;V � �n(�;  ) = h1
g
knr�;r iH + hn

Z

2

(Tr2 �)(z)(Tr2  )(z) dS2 (22)

and

hFn(t);  iV�;V = hnT1

Z

2

(Tr2  )(z) dS2 + S0(t)

Z

4

(Tr4  )(z) dS4:

Let fhng be a sequence such that hn ! h and let fkng be a sequence such that kn ! k

uniformly in z, i.e., kn ! k in C(
). Since we know hn ! h, this implies Fn ! F

in L2(0; T ;V�). From the previous section we know solutions depend continuously on the

forcing function when Fn ! F in L2(0; T ;V�). Thus without loss of generality we can

suppress the dependence of F on hn and take F for Fn in (21) with un( � ; kn; hn) a weak

solution of 8<
:
_un + Anun = F

un(0) = u0

(23)

where An is de�ned as in (22). By (3) we know for N1 suÆciently large there exist constants

�KL > 0 and �KU < 1 such that kn(z) 2 [ �KL; �KU ], k(z) 2 [ �KL; �KU ] for all z 2 
 and all

n � N1. Since hn ! h, for N2 suÆciently large there exist constants �hL > 0 and �hU < 1
such that hn 2 [�hL; �hU ], h 2 [�hL; �hU ] for all n � N2. Without loss of generality, hereafter we

assume all n will satisfy n � N = maxfN1; N2g.
Note �n is uniformly (in n) V-coercive satisfying �n(�; �) � C1jj�jj2V, where

C1 = minfR�1
U

�KL; �hLgM�1
U

and C1 is independent of n.

Subtracting the weak form of (23) from (20) we obtain

h _u(t)� _un(t);  iV�;V + �(u(t);  )� �n(un(t);  ) = 0

17



for all  2 V. Thus

h _u(t)� _un(t);  iV�;V + h1
g
(kru(t)� knrun(t));r iH

+

Z

2

(h(Tr2 u(t))(z)� hn(Tr2 un(t))(z))(Tr2  )(z) dS2 = 0

for all  2 V.
Adding and subtracting terms we see

h _u(t)� _un(t);  iV�;V + h1
g
(k � kn)ru(t);r iH + h1

g
kn(ru(t)�run(t));  iH

+ (h� hn)

Z

2

(Tr2 u(t))(z)(Tr2  )(z) dS2

+ hn

Z

2

(Tr2 (u(t)� un(t)))(z)(Tr2  )(z) dS2 = 0

for all  2 V.
Fix t 2 [0; T ] and let  = u(t)� un(t) in the previous equation. Thus

1

2

d

dt
fjju(t)� un(t)jj2Hg+ h1

g
kn(ru(t)�run(t));ru(t)�run(t)iH

+ hn

Z

2

(Tr2 (u(t)� un(t)))(z)(Tr2 (u(t)� un(t)))(z) dS2

= h1
g
(kn � k)ru(t);ru(t)�run(t)iH

+ (hn � h)

Z

2

(Tr2 u(t))(z)(Tr2 (u(t)� un(t)))(z) dS2

and hence using the de�nition of �n and integrating from 0 to t, for t 2 [0; T ] we obtain

jju(t)� un(t)jj2H + 2

Z
t

0

�n(u(�)� un(�); u(�)� un(�)) d�

= 2

Z
t

0

h1
g
(kn � k)ru(�);ru(�)�run(�)iH d�

+ 2

Z
t

0

(hn � h)

Z

2

(Tr2 u(�))(z)(Tr2 (u(�)� un(�)))(z) dS2 d�:

Using the fact �n is V-coercive on the left side of the equation, and the Cauchy-Schwartz

inequality, the relation 2ab � a2 + b2, and the equivalent form of the V-norm generated by
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(5) on the right side, we see

jju(t)� un(t)jj2H + 2C1

Z
t

0

jju(�)� un(�)jj2V d�

� 2

Z
t

0

jj1
g
(kn � k)ru(�)jjHjjru(�)�run(�)jjH d�

+ 2

Z
t

0

j(hn � h)

Z

2

(Tr2 u(�))(z)(Tr2 (u(�)� un(�)))(z) dS2j d�

� 2

C1

Z
t

0

R�2
L
jjkn � kjj21jjru(�)jj2H d� +

C1

2

Z
t

0

jjru(�)�run(�)jj2H d�

+
2M�1

L

C1

Z
t

0

jhn � hj2
Z

2

j(Tr2 u(�))(z)j2 dS2 d�

+
C1

2M�1
L

Z
t

0

Z

2

j(Tr2 (u(�)� un(�)))(z)j2 dS2 d�

� 2

C1R
2
L

jjkn � kjj21
Z

t

0

jju(�)jj2V d� +
C1

2

Z
t

0

jju(�)� un(�)jj2V d�

+
2

C1M
2
L

jhn � hj2
Z

t

0

jju(�)jj2V d� +
C1

2

Z
t

0

jju(�)� un(�)jj2V d�

where jj � jj1 is the C(
) norm. Combining like terms we see

jju(t)� un(t)jj2H + C1

Z
t

0

jju(�)� un(�)jj2V d�

� (
2

C1R
2
L

jjkn � k jj21 +
2

C1M
2
L

jhn � hj2)
Z

t

0

jju(�)jj2V d�:

If we de�ne Gn(T ) by

Gn(T ) = (
2

C1R
2
L

jjkn � k jj21 +
2

C1M
2
L

jhn � hj2)jjujjL2(0;T ;V)

and recall kn ! k in C(
), hn ! h and u 2 L2(0; T ;V), we see Gn(T )! 0. Thus

jju(t)� un(t)jj2H +
C1

2

Z
t

0

jju(�)� un(�)jj2V d� � Gn(T ) (24)

and so as n ! 1, u ! un in C(0; T ;H) and in L2(0; T ;V). Thus the solution depends

continuously on the parameters k and h. We actually have proved the somewhat stronger

result:

19



Theorem 3.4 The mapping (k ; h)! u( � ; k ; h), where u( � ; k ; h) is a weak solution to (20)

is Lipschitz continuous from C(
)� R
+
1 to C(0; T ;H) \ L2(0; T ;V).

3.3.2 Continuous Dependence on � and cp

As before, let g = �cp and de�ne a sequence fgng such that gn ! g uniformly in z, i.e.,

in C(
). Thus we know by (2) for N suÆciently large, there exist constants �RL > 0 and

�RU < 1 such that for N suÆciently large, gn(z) 2 [ �RL; �RU ], g(z) 2 [ �RL; �RU ] holds for all

n � N and all z 2 
. Without loss of generality, from hereafter we assume all n will satisfy

n � N .

Let Hn = H1(
) with the weighted inner product h�; �iHn
= hgn�; �iL2. Note the Hn norm

is equivalent to the H norm uniformly in n and there are �nite, positive constants JL; JU

such that

JLjj�jj2H � jj�jj2Hn
� JU jj�jj2H (25)

for all n. De�ne Vn = H1(
) with inner product

h�;  iVn = hr�;r iHn
+ h�;  iL2

which has equivalent representation

h�;  iVn �= hr�;r iHn
+

Z

2

h(Tr2 �)(z)(Tr2  )(z) dS2

by Theorem 3.1.

Suppose u( � ; g) is a solution of

8<
:
_u+ Au = F

u(0) = u0

(26)

in V� and suppose un( � ; gn) is a solution of

8<
:
_un + Anun = Fn

un(0) = u0

(27)
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in V�
n
where

hAn�;  iV�
n
;Vn = �n(�;  ) = h 1

gn
kr�;r iHn

+ h

Z

2

(Tr2 �)(z)(Tr2  )(z) dS2

and

hFn(t)�;  iV�
n
;Vn = hF (t)�;  iV�;V:

for all  2 Vn �= V.

Subtracting the weak form of (27) from (26) we obtain

h _u(t);  iV�;V�h _un(t);  iV�
n
;Vn + �(u(t);  )� �n(un(t);  )

= hF (t);  iV�;V � hFn(t);  iV�
n
;Vn

for all  2 V. Thus

h _u(t); iV�;V � h _un(t);  iV�
n
;Vn + h1

g
kru(t);r iH

+ h

Z

2

(Tr2 u(t))(z)(Tr2  )(z) dS2 � h 1
gn
krun(t);r iHn

� h

Z

2

(Tr2 un(t))(z)(Tr2  )(z) dS2 = 0

and hence

h _u(t); iV�;V � h _un(t);  iV�n;Vn + hkru(t);r iL2

+ h

Z

2

(Tr2 u(t))(z)(Tr2  )(z) dS2 � hkrun(t);r iL2

� h

Z

2

(Tr2 un(t))(z)(Tr2  )(z) dS2 = 0

for all  2 V. De�ne ~� by

~�(�;  ) = hkr�;r iL2 + h

Z

2

(Tr2 �)(z)(Tr2  )(z) dS2

and note ~� is V-coercive satisfying ~�(�; �) � C2jj�jjV where

C2 = minfR�1
U
KL; hgM�1

U
:
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Adding and subtracting terms we see

h _u(t);  iV�;V � h _u(t);  iV�
n
;Vn + h _u(t)� _un(t);  iV�

n
;Vn + ~�(u(t)� un(t);  ) = 0:

Fix t 2 [0; T ] and let  = u(t)� un(t) in the previous equation. Thus

1

2

d

dt
fjju(t)� un(t)jj2Hn

g+ ~�(u(t)� un(t); u(t)� un(t))

= hgn
g
_u(t)� _u(t); u(t)� un(t)iV�;V

and hence integrating from 0 to t we obtain

jju(t)� un(t)jj2Hn
+ 2

Z
t

0

~�(u(�)� un(�); u(�)� un(�)) d�

= 2

Z
t

0

h(gn
g
� 1) _u(�); u(t)� un(t)iV�;V d�:

Since the Hn norm is equivalent to the H norm uniformly in n, using (25) we can rewrite

this equation as

JLjju(t)�un(t)jj2H + 2

Z
t

0

~�(u(�)� un(�); u(�)� un(�)) d�

� 2

Z
t

0

jh(gn
g
� 1) _u(�); u(t)� un(t)iV�;Vj d�:

Using the fact that ~� is V-coercive on the left side of the equation, and the Cauchy Schwartz

inequality and the relation 2ab � a2 + b2 on the right side, we see

JLjju(t)�un(t)jj2H + 2C2

Z
t

0

jju(�)� un(�)jj2V d�

� 2

Z
t

0

jj(gn
g
� 1) _u(�)jjV�jju(�)� un(�)jjV d�

� 1

C2

Z
t

0

jj(gn
g
� 1) _u(�)jj2V� d� + C2

Z
t

0

jju(�)� un(�)jj2V d�:

Combining like terms we see

JLjju(t)� un(t)jj2H + C2

Z
t

0

jju(�)� un(�)jj2V d� �
1

C2

Z
t

0

jjgn
g
� 1jj21jj _u(�)jj2V� d�:
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Let Gn(T ) be de�ned by

Gn(T ) =
1

C2

jjgn � g

g
jj21jj _ujjL2(0;T ;V�)

and note Gn(T )! 0 since gn ! g in C(
) and _u 2 L2(0; T ;V�). Hence we have

JLjju(t)� un(t)jj2H + C2

Z
t

0

jju(�)� un(�)jj2V d� � Gn(T )

and so un ! u in C(0; T ;H) and in L2(0; T ;V). Thus the solution depends Lipschitz

continuously on the parameters � and cp. We have proved the following theorem:

Theorem 3.5 The mapping g ! u( � ; g), where u( � ; g) is a solution to (26) is Lipschitz

continuous from C(
) to C(0; T ;H) \ L2(0; T ;V).

4 Formulation of the Inverse Problem

4.1 Preliminaries

For ftigni=1 � [0; T ], T < 1, we can �nd (weak) solutions u(ti) to (1) for 1 � i � n <1.

From the solutions fu(ti; z)gni=1 we can compute the average temperature change between

consecutive time steps at the heat sink interface (boundary 
2). We de�ne the average

temperature change from ti�1 to ti by

Ti =
1

j
2j
Z

2

Tr2 (u(ti)� u(ti�1))(z) dS2 (28)

for i = 2; : : : ; n. Recall Tr2 is the continuous trace operator from H1(
)! H
1

2 (
2) de�ned

by (Tr2 f)(z) = f(z)j
2 . We choose to look at the data this way in order to relate our model

data to our experimental data.

Before using the experimental data we have collected in our parameter estimation prob-

lem, we �rst used generated data for proof of concept. We generated data by solving (1) at

the eight times corresponding to our data with the parameter values from Table 1. We call
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these solutions û(t1; z); û(t2; z); : : : ; û(t8; z). We de�ne the vector of average temperature

changes T̂ = [T̂2 T̂3 � � � T̂8] where

T̂j =
1

j
2j
Z

2

Tr2 (û(tj)� û(tj�1))(z) dS2

for 2 � j � 8. Furthermore, we de�ne T (q) to be the vector generated by the solution using

the speci�ed parameter (or parameters) q, which we will denote u(t; z; q), and (28), i.e.,

Tj(q) =
1

j
2j
Z

2

Tr2 (u(tj; q)� u(tj�1; q))(z) dS2

for 2 � j � 8 and T (q) = [T2(q) T3(q) � � � T8(q)] . We will assume any unspeci�ed parameters

are given by the values in Table 1.

We �rst tried to estimate a constant value for the thermal conductivity of the aluminum

particles (for examples with uniformly distributed particles of equal size) that best matched

our generated data. This parameter estimation problem was unsuccessful even in this sim-

plest of cases. In comparison, we were successful in estimating the constant value for the

thermal conductivity of the silicone polymer that best matched our generated data. These

results were not surprising, however, when the graphs of the cost functions for the parameter

identi�cation were plotted as a function of the parameter. The cost function for the particle

parameter was jagged with no clear minimum, whereas the cost function for the silicone

parameter was smooth with a clearly de�ned minimum. For further information on our

constant parameter estimation problem see [8] and for general inverse problems see [3, 4, 5].

4.2 Estimating the Thermal Conductivity Parameters as Random

Variables

The theoretical basis of this approach can be found in [1] (see also [9, 12]). While this

formulation allows us to estimate the distributions for both of the thermal conductivity

parameters, kp and ks, at the same time, we will estimate them individually here. We �rst

assume the parameter kp is a realization for a normally distributed random variable with

mean �p and variance �2
p
and attempt to estimate its distribution. For now, we will hold
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all other parameters constant. In order to ensure all values in the distribution for kp are

positive we will use a truncated Gaussian distribution and require �p � 3�p > 0. Thus the

probability density function for the random variable is given by

f(x) =
1

0:9974 �p
p
2�

e�(x��p)
2=2�2

p (29)

for x 2 [�p � 3�p; �p + 3�p]. If we de�ne qp = (�p; �p), we can de�ne the expected value of

T by

E[T (ti; qp)jPp] =
Z

�p+3�p

�p�3�p
T (ti; x)

1

0:9974 �p
p
2�
e�(x��p)

2=2�2
p dx

where Pp is the probability distribution function arising from (29) with mean �p and variance

�2
p
. Thus the \best �t" parameter q�

p
is the solution to the least squares problem

min
qp2Q

J(Pp; T̂ ) � min
qp2Q

J(Pp) � min
qp2Q

nX
i=1

jE[T (ti; qp)jPp]� T̂ij2 (30)

where Q = R
+ � R

+ with the additional restriction �p � 3�p > 0.

For proof of concept, we used the same generated data described in Section 4.1. While

we realize the data was not generated with kp normally distributed, we would consider a

successful parameter estimation to have the mean of the distribution near the true value for

kp and small standard deviation. We carried out numerous estimation trials and in Table 2

we present values for two of these minimizations of (30). We used Matlab's constrained mini-

mization routine fmincon. The function fmincon uses a Sequential Quadratic Programming

method. The three main steps of this algorithm are the solving of a Quadratic Program-

ming subproblem, the updating of the Hessian matrix of the Lagrangian solution, and the

calculation of a merit function and line search. A complete description of this method can

be found in [15].

The initial guess is denoted by qp0 = (�p0; �p0) and the best parameter �t found by Matlab

is denoted by q�
p
= (��

p
; ��

p
). For all of these minimizations, n = 5 in (30).

In all our tests, the mean of the \best �t" distribution did not closely resemble the actual

parameter value, kp = 217 and the standard deviation was not small. In all cases, the optimal

parameters are not far from the initial guesses. While we used a relatively small number
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�p0 �p0 J(qp0) ��
p

��
p

J(q�
p
)

1000 100 0:0197193 1242:66 297:228 0:0153633

250 50 0:0391095 250:001 50:0005 0:0391080

Table 2: Estimating distribution of kp

for n and a constant distribution, we would still expect better results if the inverse problem

were well behaved.

In contrast, suppose we instead view ks as a realization for a normally distributed random

variable and estimate �s and �s for the distribution. As before we used a truncated Gaussian

to ensure all possible values are positive, with probability density function

f(x) =
1

0:9974 �s
p
2�

e�(x��s)
2
=2�2s (31)

for x 2 [�s � 3�s; �s + 3�s], �s � 3�s > 0. If we de�ne qs = (�s; �s), we can de�ne

E[T (ti; qs)jPs] =
Z

�s+3�s

�s�3�s
T (ti; x)

1

0:9974 �s
p
2�
e�(x��s)

2
=2�2s dx

where Ps is the probability distribution function arising from (31) with mean �s and variance

�2
s
. Thus the \best �t" parameter q�

s
is the solution to the least squares problem

min
qs2Q

J(Ps; T̂ ) � min
qs2Q

J(Ps) � min
qs2Q

nX
i=1

jE[T (ti; qs)jPs]� T̂ij2 (32)

where Q = R
+ � R

+ with the additional restriction �p � 3�p > 0.

In Table 3 we see values for one minimization of (32) (again we carried out multiple

tests, obtaining similar results). We used Matlab and the generated data as before. The

initial guess is denoted by qs0 = (�s0; �s0) and the best parameter �t found by Matlab by

q�
s
= (��

s
; ��

s
). For all of these minimizations, n = 5 in (32).

In this example, note the mean ��
s
of the distribution is very close to the actual value

of ks = 0:12 W=mK used to generate the data and the standard deviation is small. This

indicates that despite the fact we are using a small number for n, the parameter estimation

algorithm performs well when estimating ks (or its distribution).
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�s0 �s0 J(qs0) ��
s

��
s

J(q�
S
)

1 0.25 19.294 0.12036 2.5087e-05 1.4140e-02

Table 3: Estimating distribution of ks

5 Sensitivity Equations

In the previous section we found that small changes in the parameter for the thermal con-

ductivity of the particles, kp, seem to have little impact on the solution u(t; z). In contrast,

small changes in the thermal conductivity of the silicone, ks, appear to signi�cantly change

the solution u(t; z). Sensitivity equations allow us to anticipate and quantify how changes

in the parameters a�ect changes in the solutions. Thus, we turn to sensitivity equations to

investigate whether kp and ks are, in fact, in
uencing the solutions as we suspect. Readers

are referred [19, 20, 21, 22] for more information on sensitivity equation methods and their

use in inverse problem methodology.

5.1 An Abstract Derivation in Terms of Fr�echet Derivatives

In order to derive the sensitivity equations, we must formally di�erentiate our system of equa-

tions, including the boundary conditions, and then interchange the order of di�erentiation.

Before explicitly following this procedure, we �rst present a framework that rigorously justi-

�es the derivation. This derivation relies on the Implicit Function Theorem and a corollary

to the Implicit Function Theorem, both of which we state here.

Theorem 5.1 (Implicit Function Theorem) [7, Theorem 3.1.10, p.115] Let X, Y , and

Z be Banach spaces. Suppose f(x; y) is a continuous mapping of a neighborhood U of (x0; y0)

in X � Y into Z, f(x0; y0) = 0 and fy(x0; y0) exists, is continuous in x, and is a linear

homeomorphism of Y onto Z. Then there is a unique continuous mapping g de�ned in a

neighborhood U1of x0, g : U1 ! Y , such that g(x0) = y0 and f(x; g(x)) = 0 for x 2 U1.

Corollary 5.2 [7, Corollary 3.1.11, p.115] If, in addition to the hypothesis of the Implicit

Function Theorem, fx(x; y) exists and is continuous for (x; y) near (x0; y0), then the function
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g(x) is continuously di�erentiable for x 2 U1 and

g0(x) = �[fy(x; g(x))]�1fx(x; g(x)): (33)

A proof of Theorem 5.1 and Corollary 5.2 can be found in [7].

In Section 3.2 we found there exists a unique weak solution to

8<
:
_u+ Au = F

u(0) = u0

(34)

where F is de�ned in (9) and A is given by (8). Without loss of generality, we assume u(0) =

0. (If not use a simple change of variables, û = u� u(0).) We are interested in examining

the sensitivity of these solutions with respect to the thermal conductivity parameter k , or,

more speci�cally, with respect to parameters q in a parameterization k(q) of the thermal

conductivity. Let Q be the space of all possible parameter values, Y = L2(0; T ;V�) and

U = L2(0; T ;V) \H1(0; T ;V�). The norm on U is given by

jjvjj2U = jjvjj2
L2(0;T ;V) + jjvjj2

H1(0;T ;V�)

for v 2 U (see [13, p. 102]).

Note F as de�ned in (9) does not depend on q. The thermal conductivity does depend

on q, k = k(q) : Q! R and so by (8) we have A = A(q) : Q! L (V;V�), with

hA(q)�;  iV�;V = h1
g
k(q)r�;r iH + h

Z

2

(Tr2 �)(z)(Tr2  )(z) dS2

for �;  2 V. Thus for each q 2 Q there is an associated weak solution u( � ; q) 2 U.
De�ne M : Q! L (U;Y) by

[M(q)]v = _v + A(q)v:

Since (34) possesses a unique solution for each F 2 L2(0; T ;V�), we see thatM(q) is invertible

for each q 2 Q. Note also M(q) is linear in v, i.e., [M(q)](v1 + v2) = [M(q)]v1 + [M(q)]v2.

De�ne N : Q! Y by

N(q) = F:
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Finally, de�ne G : U�Q! Y by

G(u; q) = ([M(q)]u)� [N(q)];

and associate u( � ; q) with the pair (u( � ; q); q) satisfying G(u( � ; q); q) = 0 in the Y =

L2(0; T ;V�) sense. Note G induces a natural mapping from Q to U given by q 7! u( � ; q).
Also, u 7! G(u(�; q); q) is an aÆne map from U to Y.

Fix q0 2 Q and let u0 � u0( � ; q0) 2 U. In order to characterize the sensitivity at q0

we need the operator Dqu(q0) 2 L (Q;U). We assume (u0; q0) � (u0( � ; q0); q0) satis�es

G(u0; q0) = 0 in the Y = L2(0; T ;V�) sense.

Lemma 5.3 The partial Fr�echet derivative @uG(u0; q0) : U ! Y exists and is given by

@uG(u0; q0) =M(q0) 2 L (U;Y).

Proof: For h 6= 0 2 U,

jjG(u0 + h; q0)�G(u0; q0)�M(q0)hjjY
= jj[M(q0)](u0 + h)� [N(q0)]� ([M(q0)]u0 � [N(q0)])� [M(q0)]hjjY
= jj[M(q0)]h� [M(q0)]hjjY
= 0:

We assume the function k : Q ! R is Fr�echet di�erentiable at q0 and so we de�ne

M : Q! L (Q;L (U;Y)) by

[M (q0)u] = A (q0)u

where A : Q! L (Q;L (V;V�)) is given by

hA (q0)�;  iV�;V = h1
g
Dqk(q0)r�;r iH

for �;  2 V. Note that k : Q! R and so Dqk(q0) 2 L (Q;R).

Let X = L (U;Y). Since Y and U are Banach spaces, X is a Banach space as well.

Thus we can de�ne a norm on X by

jjT jjX = sup
jjvjjU=1

jjTvjjY
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for T 2 X . Recall for � 2 V�

jj�jjV� = sup
jj jjV=1

h�;  iV�;V

and for � 2 V
jj�jj2V = jjr�jj2H + jj�jj2

L2
:

Recall from (2) that g is positive and �nite and note that for any � 2 V,

jjr�jj2
L2(
) = hr�;r�iL2(
)

= h1
g
� gr�;r�iL2(
)

= h1
g
r�;r�iH

� R�1
L
jjr�jj2H

� R�1
L
jj�jj2V

and so jjr�jjL2(
) �
q
R�1
L
jj�jjV.

Lemma 5.4 M is Fr�echet di�erentiable at q0, with [M (q0)u]h = [DqM(q0)h]u. Further-

more, M (q0) is a bounded linear operator.

Proof: For h 6= 0 2 Q we want to show

lim
h!0

1

jjhjjQ
jjM(q0 + h)�M(q0)� [M (q0)]hjjX = 0:

By de�nition of the norm in X ,

jjM(q0 + h)�M(q0)� [M (q0)]hjjX = sup
jjujjU=1

jj[M(q0 + h)u�M(q0)u� [M (q0)u]h]jjY:

For any u 2 U with jjujjU = 1,

jj[M(q0 + h)u�M(q0)u� [M (q0)u]h]jj2Y

30



=

Z
T

0

jj([M(q0 + h)]u)(t)� ([M(q0)]u)(t)� ([M (q0)u]h)(t)jj2V� dt

=

Z
T

0

jj _u(t) + A(q0 + h)u(t)� [ _u(t) + A(q0)u(t)]�A (q0)u(t)hjj2V� dt

=

Z
T

0

sup
jj jjV=1

hA(q0 + h)u(t)� A(q0)u(t)�A (q0)u(t)h;  i2V�;V dt

=

Z
T

0

sup
jj jjV=1

h1
g
k(q0 + h)ru(t)� 1

g
k(q0)ru(t)� 1

g
Dqk(q0)hru(t);r i2H dt

�
Z

T

0

sup
jj jjV=1

jjk(q0 + h)� k(q0)�Dqk(q0)hjj21 hru(t);r i2
L2(
) dt

� sup
jj jjV=1

jjk(q0 + h)� k(q0)�Dqk(q0)hjj21 jjr jj2
L2(
)

Z
T

0

jjru(t)jj2
L2(
) dt

� sup
jj jjV=1

jjk(q0 + h)� k(q0)�Dqk(q0)hjj21 R�1
L
jj jj2V

Z
T

0

R�1
L
jju(t)jj2V dt

= jjk(q0 + h)� k(q0)�Dqk(q0)hjj21 R�2
L
jjujj2

L2(0;T ;V)

� jjk(q0 + h)� k(q0)�Dqk(q0)hjj21 R�2
L
jjujj2U

Thus

jjM(q0 + h)�M(q0)� [M (q0)]hjjX � jjk(q0 + h)� k(q0)�Dqk(q0)hjj1 R�1
L
:

We know

lim
h!0

1

jjhjjQ jjk(q0 + h)� k(q0)�Dqk(q0)hjj1 = 0

since we assume k is Fr�echet di�erentiable. Thus

lim
h!0

1

jjhjjQ
jjM(q0 + h)�M(q0)� [M (q0)]hjjX = 0

and so M is Fr�echet di�erentiable with DqM = M and M (q0) 2 L (Q;L (U;Y)) =

L (Q;X ).
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Lemma 5.5 If DqN(q0) : Q ! Y and DqM(q0) : Q ! L (U;Y) exist in the Fr�echet sense,

then the partial derivative of G with respect to Q at (u0; q0) exists and

[@qG(u0; q0)] 2 L (Q;Y) is given by

[@qG(u0; q0)] =M (q0)u0 �DqN(q0):

Proof: By Lemma 5.4, DqM(q0) =M (q0) 2 L (Q;L (U;Y)). Since N(q0) has no dependence

on q, DqN(q0) is the zero operator and so DqN(q0) 2 L (Q;Y). ThusM (q0)u0�DqN(q0) 2
L (Q;Y).

For h 6= 0 2 Q,

jjG(u0; q0 + h)�G(u0; q0)� [M (q0)u0 �DqN(q0)]hjjY

= jj[M(q0 + h)]u0 �N(q0 + h)� ([M(q0)]u0 �N(q0)])

� ([DqM(q0)h]u0 �DqN(q0)hjjY

� jjM(q0 + h)�M(q0)�DqM(q0)hjjX jju0jjU
+ jjN(q0 + h)�N(q0)�DqN(q0)hjjY

Since DqM(q0) exists in the Fr�echet sense,

lim
h!0

1

jjhjjQ jjM(q0 + h)�M(q0)�DqM(q0)hjjX = 0:

Moreover, since N has no dependence on q,

N(q0 + h)�N(q0)�DqN(q0)h � 0:

Thus

lim
h!0

1

jjhjjQ
jjG(u0; q0 + h)�G(u0; q0)� [M (q0)u0 �DqN(q0)]hjjY = 0

and so [@qG(u0; q0)] =M (q0)u0 �DqN(q0).

Theorem 5.6 Let Q0 be a subset of the interior of Q and let U0 be a subset of the inte-

rior of U. Fix q0 2 Q0 � Q. Suppose there exists a unique u0( � ; q0) 2 U0 � U such that

G(u0( � ; q0); q0) = 0. If [M(q0)]
�1 exists in L (Y;U) and if DqM(q0) =M (q0) and DqN(q0)
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exist in the Fr�echet sense in L (Q;X ) and L (Q;Y) respectively, then the sensitivity opera-

tor, s � Dqu( � ; q0) 2 L (Q;U), exists and satis�es

M(q0)s = �M (q0)u0 +DqN(q0)

Proof: In the Implicit Function Theorem 5.1, we setX = Q, Y = U, and Z = Y. The function

f(x; y) in Theorem 5.1 is our G(u; q), and by assumption G(u0; q0) = 0. By Lemma 5.3, we

know @uG(u0; q0) 2 L (U;Y). Since M(q) is invertible for each q 2 Q, [M(q0)]
�1 2 L (Y;U).

Thus u( � ; q) satis�es G(u( � ; q); q) = 0 for q 2 Q0.

By Lemma 5.5, we know @qG(u0; q0) 2 L (Q;Y). Furthermore, by Lemma 5.4 we know

DqM(q0) =M (q0) and so by Corollary 5.2, M(q0)s = �M (q0)u0 +DqN(q0). In fact, since

DqN(q0) is the zero operator, M(q0)s = �M (q0)u0.

5.2 Sensitivity to the Particle Thermal Conductivity

5.2.1 Derivation of Sensitivity Equations

In Section 3.1 we established the system (1) has a weak solution u(t; z). If we assume the

thermal conductivity is dependent on the parameter q, then q 7! k(z; q) is given by

k(z; q) =

8<
:
�qs z 2 
s

qp z 2 
p:
(35)

We want to consider the thermal properties of the composite silicone as we hold the constant

�qs �xed and let the constant qp vary over a range of admissible material values. Thus any

weak solution of (1) will have the form u(t; z; q). By studying the sensitivity of the solution

u to changes in qp, we can study the sensitivity of the system to the thermal conductivity of

the particles.

In order to derive the sensitivity equations, we will formally di�erentiate (1) with respect

to qp, interchange the order of di�erentiation and de�ne the sensitivity. Our analysis in

Section 5.1 guarantees the existence of these derivatives and that the resulting sensitivity

equation can be rigorously interpreted in terms of an associated weak or variational system.
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First, formally di�erentiating g(z) _u(t; z) = r � (k(z)ru(t; z)) with respect to qp yields

g(z)
@

@qp
( _u(t; z; q)) =

@

@qp
(r � (k(z; q)ru(t; z; q))):

Switching the order of di�erentiation we see

g(z)
@

@t
(
@u

@qp
(t; z; q)) = r � ( @k

@qp
(z; q)ru(t; z; q)) +r � (k(z; q)r @u

@qp
(t; z; q)):

If we then de�ne the sensitivity to qp as s(t; z; q) =
@u

@qp
(t; z; q) and substitute into the previous

equation we have

g(z) _s(t; z; q) = r � ( @k
@qp

(z; q)ru(t; z; q)) +r � (k(z; q)rs(t; z; q)):

It is also necessary to di�erentiate the boundary conditions with respect to qp. To do

this, note

@

@qp
(k(z; q)

@u

@n
(t; z; q)) =

@k

@qp
(z; q)

@u

@n
(t; z; q) + k(z; q)

@

@n
(
@u

@qp
(t; z; q))

= k(z; q)
@s

@n
(t; z; q) +

@k

@qp
(z; q)

@u

@n
(t; z; q):

We will assume the source 
ux S0 and the initial condition � are independent of qp.

It is important to note that

@k

@qp
(z; q) =

8<
:
0 z 2 
s

1 z 2 
p

and so @k

@qp
(z; q) 2 L1(
). Furthermore, @k

@qs
(z; q) = 0 since we are holding qs = �qs �xed.

Since q = (qp; qs), Dqk(q) = ( @k
@qp
; @k
@qs

) = ( @k
@qp
; 0). Also, since u 2 L2(0; T ;V), we know

ru 2 L2(0; T ;L2(
)2). Then if we de�ne

f(t; z; q) =
@k

@qp
(z; q)ru(t; z; q); (36)

we have f(�; �; q) 2 L2(0; T ;L2(
)2).
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Thus we formally have the following system for our sensitivity equation:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

g(z) _s(t; z; q) = r � (k(z; q)rs(t; z; q)) +r � f(t; z; q)
k(z; q) @s

@n
(t; z; q)j
4 = � @k

@qp
(z; q)@u

@n
(t; z; q)j
4

k(z; q) @s
@n
(t; z; q)j
2 = �( @k

@qp
(z; q)@u

@n
(t; z; q) + hs(t; z; q))j
2

k(z; q) @s
@n
(t; z; q)j
1 = � @k

@qp
(z; q)@u

@n
(t; z; q)j
1

k(z; q) @s
@n
(t; z; q)j
3 = � @k

@qp
(z; q)@u

@n
(t; z; q)j
3

s(0; z; q) = 0

(37)

Note the solution u(t; z; q) to (1) acts as part of the forcing term f on the solution to (37).

5.2.2 Weak Solution to Sensitivity Equation

We refer to the spaces H; V; H, and V de�ned in Section 3.1.1. De�ne a sesquilinear form

� : V� V! R by

�(�;  ) = h1
g
kr�;r iH + h

Z

2

(Tr2 �)(z)(Tr2  )(z) dS2 (38)

and note � de�nes an operator A 2 L (V;V�) where hA�;  iV�;V = �(�;  ). We observe that

� = �(q) is just the parameter dependent sesquilinear form � of (8) and A = A(q) is the

analog of A generated by �.

De�ne F : [0; T ]! V� by

[F(t)]( ) = h�1

g
f;r iH (39)

where f is given in (36). We shall see shortly that A and F are the operators we need to

�nd the weak or variational form of (37).

Suppose s solves

_s+As = F in V�;

i.e., for all  2 V,
h _s(t) +As(t)� F(t);  iV�;V = 0:
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By de�nition

h _s(t) +As(t);  iV�;V = hF(t);  iV�;V
and thus

h _s(t);  iV�;V =h�1

g
krs(t);r iH � h

Z

2

(Tr2 s(t))(z)(Tr2  )(z) dS2

+ h�1

g
f(t);r iH:

(40)

Note that the result in Theorem 5.6 says the sensitivity operator, s, satis�es M(q)s =

�M (q)u, i.e.,

_s(t) + A(q)s(t) = �A (q)u;

which by de�nition is

h _s(t);  iV�;V+h1
g
krs(t);r iH + h

Z

2

(Tr2 s(t))(z)(Tr2  )(z) dS2

= h�1

g
Dqk(q)ru(t);r iH:

Clearly this is equivalent to (40) and hence our formal and rigorous derivations result in the

same system.

Returning to equation (40), we see it is equivalent to

h _s(t);  iV�;V =h�krs(t);r iL2 � h

Z

2

(Tr2 s(t))(z)(Tr2  )(z) dS2

+ h�f(t);r iL2

by the de�nition of the H-norm.

Now, if s 2 L2(0; T ;V ), krs 2 L2(0; T ;V ), and f 2 L2(0; T ;V ), using the Divergence

Theorem and the identity

r � (k(z)rs(t; z) (z)) = (r � (k(z)rs(t; z)) (z) + k(z)(rs(t; z) � r (z))

in the previous equation, we see

h _s(t);  iV�;V =hr � (krs(t));  iL2 �
Z
@


(Tr
 (n � krs(t)))(z)(Tr
  )(z) dS
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� h

Z

2

(Tr2 s(t))(z)(Tr2  )(z) dS2

�
Z
@


(Tr
 (n � f(t)))(z)(Tr
  )(z) dS + hr � f(t);  iL2

where Tr
 is the continuous trace operator mapping f 2 H1(
)! H
1

2 (@
) with (Tr
 f)(z) =

f(z)j@
.
If we have enough smoothness on s with respect to the time derivative (i.e., _s 2 L2(0; T ;H))

then

h _s(t);  iV�;V = h _s(t);  iH = hg _s(t);  iL2

and so

hg _s(t)�r � (kru(t))�r � f(t);  iL2 =

�
Z
@


(Tr
 n � (krs(t)� @k

@qp
ru(t)))(z)(Tr
  )(z) dS

� h

Z

2

(Tr2 s(t))(z)(Tr2  )(z) dS2

(41)

for all  2 V. We know (41) holds for all  2 V = H1(
), thus for all  2 H1
0 (
) ,

hg _s(t)�r � (kru(t))�r � f(t);  iL2 = 0:

Since H1
0 (
) is a dense subset of L

2(
), we know

g _s(t)�r � (kru(t))�r � f(t) = 0

in the L2 sense. Thus we can rewrite (41) as

�
Z
@


(Tr
 n � (krs(t)� @k

@qp
ru(t)))(z)(Tr
  )(z) dS

� h

Z

2

(Tr2 s(t))(z)(Tr2  )(z) dS2 = 0:
(42)

We know @
 = 
1[
2[
3[
4 . Thus for  2 H
1
� f� 2 H1(
) : �j
2;
3;
4 = 0g � H1(
),

by (42) we see

�
Z

1

(Tr1 n � (krs(t) + @k

@qp
ru))(z)(Tr1  )(z) dS1 = 0
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and so k(z) @s
@n
(t; z)j
1 = � @k

@qp
(z)@u

@n
(t; z)j
1 . A similar argument shows

k(z) @s
@n
(t; z)j
3 = � @k

@qp
(z)@u

@n
(t; z)j
3 and k(z) @s

@n
(t; z)j
4 = � @k

@qp
(z)@u

@n
(t; z)j
4 .

For  2 H
2
� f� 2 H1(
) : �j
1;
3;
4 = 0g � H1(
), using (42) we see

�
Z

2

(Tr2 n � (krs(t) + @k

@qp
ru))(z)(Tr2  )(z) dS2

� h

Z

2

(Tr2 s(t))(z)(Tr2  )(z) dS2 = 0

and thus k(z) @s
@n
(t; z)j
2 = �( @k

@qp
(t; z)@u

@n
(t; x) + hs(t; z))j
2 . Thus if s satis�es (40), and f

and s have suÆcient additional regularity, s provides a strong solution to (37).

Thus (40) is the weak or variational form of (37), and hence any solution s of (40) (if it

exists) is a weak solution of (37).

5.2.3 Well-Posedness

We next establish existence of solutions to parabolic systems of the form

8<
:
_s+As = F in V�

s(0) = s0:
(43)

We use the Gelfand triple V ,! H �= H� ,! V� as in Section 3.2. Since � de�ned in (38)

is equivalent to � de�ned in (8), we know � is V-bounded and V-coercive uniformly in q 2 Q.
We also observe that the forcing term F de�ned in (39) satis�es

F 2 L2(0; T ;V�): (44)

In order to see that (44) holds, recall f 2 L2(0; T ;L2(
)2). Thus F(t) : V! R and is linear,

i.e., F(t) 2 V� and so F 2 L2(0; T ;V�).

Given the above hypothesis, the weak or variational form of the system (43) is

8<
:
h _s(t);  i+ �(s(t);  ) = hF(t);  i
u(0) = u0

(45)

for  2 V and h � ; � i is h � ; � iV�;V. Note the system (43) is the same as (45).
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At this point, existence, uniqueness, and continuous dependence on the forcing function

follow using an argument analogous to the arguments in Section 3.2. Thus the sensitivity

system is well-posed.

5.2.4 Matlab Solutions

Using Matlab's PDE Toolbox, we are able to numerically solve the sensitivity equation

system. Since we are interested in the temperature of the composite silicone at the heat

sink interface, i.e., the 
2 boundary, we are interested in the sensitivity at the heat sink

interface as a function of qp. Recall that in our model we assume the particles never touch

any boundary of the composite silicone. (A reasonable assumption based on the properties

of the silicone polymer.) Thus @k

@qp
(z; q)j
j = 0 for j = 1; 2; 3; 4 and we can reduce (37) to

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

g(z) _s(t; z; q) = r � (k(z; q)rs(t; z; q)) +r � f(t; z; q)
k(z; q) @s

@n
(t; z; q)j
4 = 0

k(z; q) @s
@n
(t; z; q)j
2 = �hs(t; z; q)j
2

k(z; q) @s
@n
(t; z; q)j
1 = 0

k(z; q) @s
@n
(t; z; q)j
3 = 0

s(0; z; q) = 0

(46)

To solve (46), we �rst �x a value for qp and solve (1). Then with that solution we can solve

(46) with the same �xed value of qp. We will de�ne the average sensitivity at the boundary


2 for a �xed qp at time ti by

s2(ti; qp) =
1

j
2j
Z

2

Tr2 s(ti; qp)(z) dS2 (47)

where Tr2 is again the continuous trace operator from H1(
) ! H
1

2 (
2) de�ned by

(Tr2 f)(z) = f(z)j
2 . Repeating this process for di�erent values of qp 2 Q, we can then

de�ne the relative average sensitivity to the thermal conductivity of the particles by

s2r(ti; qp) =
s2(ti; qp)

maxqp2Q(s2(ti; qp))
:
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We �x ks = �qs = 0:12 W=mK. The remainder of the parameters are given in Table 1.

In Figure 4 we depict the plots of s2r(ti; qp) as a function of qp. We let qp = 100; 110,

: : : ; 1100 and solve at each of the times t2; t3; t4, and t5 (similar graphs for t6; t7, and t8 are

found in [8]). Note that as a function of qp, there is little variation in the relative average

sensitivity along the heat sink interface at each time step. In contrast, in Section 5.3.2 we

present plots of the relative average sensitivity with respect to the thermal conductivity of

the silicone, and �nd that there is a substantial variation in the sensitivity as a function of

qs. Thus, based on our results in this section and in Section 5.3.2, we conclude the solution

u to (1) is not very sensitive to the thermal conductivity of the particles.
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Figure 4: Relative average sensitivity at 
2 at times t2, t3, t4, and t5 as a function of qp
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5.3 Sensitivity to the Silicone Polymer Thermal Conductivity

5.3.1 Derivation of Sensitivity Equations

We again begin with (1), and now we assume the thermal conductivity k(z) is given by

k(z; q) =

8<
:
qs z 2 
s

�qp z 2 
p

where �qp is a constant, and qs is varied in a range of admissible values. Any weak solution

of (1) will again have the form u(t; z; q). In order to derive the sensitivity equations we will

di�erentiate (1) with respect to qs.

The di�erentiation follows in a manner similar to the di�erentiation in Section 5.2.1. We

will de�ne the sensitivity to qs as w(t; z; q) =
@u

@qs
(t; z; q). We will again assume the source


ux S0 and the initial condition � are independent of qs.

It is important to note that

@k

@qs
(z; q) =

8<
:
1 z 2 
s

0 z 2 
p

and hence @k

@qs
(z; q) 2 L1(
). Furthermore, @k

@qp
(z; q) = 0 since we are holding qp = �qp �xed.

Thus, since q = (qp; qs), Dqk(q) = ( @k
@qp
; @k
@qs

) = (0; @k
@qs

). Recall u 2 L2(0; T ;V), and hence

ru 2 L2(0; T ;L2(
)2). Then if we de�ne

fs(t; z; q) =
@k

@qs
(z; q)ru(t; z; q)

we have fs(�; �; q) 2 L2(0; T ;L2(
)2).
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Thus we formally have the following system for our sensitivity equation:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

g(z) _w(t; z; q) = r � (k(z; q)rw(t; z; q)) +r � fs(t; z; q)
k(z; q)@w

@n
(t; z; q)j
4 = � @k

@qs
(z; q)@u

@n
(t; z; q)j
4

k(z; q)@w
@n
(t; z; q)j
2 = �( @k

@qs
(z; q)@u

@n
(t; z; q) + hw(t; z; q))j
2

k(z; q)@w
@n
(t; z; q)j
1 = � @k

@qs
(z; q)@u

@n
(t; z; q)j
1

k(z; q)@w
@n
(t; z; q)j
3 = � @k

@qs
(z; q)@u

@n
(t; z; q)j
3

w(0; z; q) = 0:

(48)

Using an argument analogous to the arguments in Section 5.2.2 and Section 5.2.3 it can

be shown there exists a unique weak solution w to (48) and that the problem is well-posed.

5.3.2 Matlab Solutions

As in Section 5.2.4 we can use Matlab to solve the sensitivity equation (48) for di�erent

values of qs. Since we assume the particles never touch any boundary of the composite

silicone, @k

@qs
j
j = 1 for j = 1; 2; 3; 4 and therefore we can reduce (48) to

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

g(z) _w(t; z; q) = r � (k(z; q)rw(t; z; q)) +r � fs(t; z; q)
k(z; q)@w

@n
(t; z; q)j
4 = �S0(t)

k(z; q)@w
@n
(t; z; q)j
2 = �(h(T1 � u(t; z; q)) + hw(t; z; q))j
2

k(z; q)@w
@n
(t; z; q)j
1 = 0

k(z; q)@w
@n
(t; z; q)j
3 = 0

w(0; z; q) = 0:

(49)

We �x kp = �qp = 217 W=mK. The remaining parameters are given in Table 1. In order to

implement the boundary condition for 
2 in the PDE Toolbox, we will use the average value

of u(t; z; q) on 
2 for u(t; z; q) in k(z; q)@w
@n
(t; z; q)j
2 = �(h(T1 � u(t; z; q)) + hw(t; z; q))j
2 .

As in Section 5.2.4, we de�ne the average sensitivity at the boundary 
2 for a �xed qs at
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time ti by

w2(ti; qs) =
1

j
2j
Z

2

Tr2 w(ti; qs)(z) dS2 (50)

where w(ti; qs) is the solution to (49) at ti for a given qs and �xed qp. Repeating this process

for di�erent values of qs 2 Q, we can then de�ne the relative average sensitivity to the

thermal conductivity of the silicone by

w2r(ti; qs) =
w2(ti; qs)

maxqs2Q(w2(ti; qs))
:
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Figure 5: Relative average sensitivity at 
2 at times t2, t3, t7, and t8 as a function of qs

In Figure 5 we present several plots of w2r(ti; qs) as a function of qs. We solved (49) with

qs = 0:02; 0:02; : : : ; 1:02 at each of the times t2; t3; : : : ; t8. In each these graphs it clear that as

a function of qs there is signi�cant variation along the heat sink interface. Thus we conclude

the solution u to (1) exhibits signi�cant sensitivity to changes in the thermal conductivity
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of the silicone. Also, we note the signi�cant di�erence between the graphs presented here

and those in Section 5.2.4. Based on these results, increasing the thermal conductivity of

the particles should not result in much improvement of the overall thermal conductivity of

the composite. (We remark that this agrees with initial experimental �ndings.) Clearly

the composite is more sensitive to the thermal conductivity of the base material. Thus a

better means of improving the overall thermal conductivity of the composite is to increase

the thermal conductivity of the base polymer used in the composite.

6 Conclusions

We have presented analysis of a two dimensional model based on the composite silicone and

the data collection process. We summarized numerical �ndings using Matlab's PDE Toolbox

for our two dimensional model. Matlab's PDE Toolbox allowed us to accommodate the

oscillatory coeÆcients in a variety of particle geometries. (In [8] results for various particle

geometries, including random and uniform geometries, were presented in some detail.) It

was found that the geometry of the composite silicone has a signi�cant impact on the heat


ux at the interface between the heat sink and the composite. In this paper we have given

theoretical results for general geometries and some numerical �ndings for the special case of

a uniform geometry.

We have given existence and uniqueness theorems based on our two dimensional model,

and have shown the model depends continuously on parameters, as well as the initial data

and forcing function. We have presented a formulation and numerical results for two dif-

ferent parameter estimation problems: estimating parameters as constants and estimating

parameters as realizations of random variables. Estimating parameters as realizations of

random variables used a probability based approach, and we have provided a careful theo-

retical framework for this approach in a separate reference [1]. All of these results readily

hold for the corresponding three dimensional model.

We carried out several numerical experiments. In each of our parameter estimation

formulations (using simulated data for proof of concept) in two dimensions, with a uniform
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geometry, we were able to accurately estimate the thermal conductivity of the silicone, but

not the thermal conductivity of the aluminum �ller particles.

After deriving the sensitivity equations, we studied the sensitivity of model solutions to

both the thermal conductivity of the particles and the thermal conductivity of the silicone.

Our numerical results clearly indicated the solution is signi�cantly more sensitive to the

thermal conductivity of the silicone than to the thermal conductivity of the particles. This

supported our results from the parameter estimation and experimental �ndings to date.

Thus, in order to signi�cantly increase the thermal conductivity of the composite silicone (or

any composite adhesive), we suggest it is best to work at increasing the thermal conductivity

of the base silicone (or base adhesive). However, we believe there is still a great deal to learn

about thermally conductive adhesives using the methodology in this paper with variable

particle geometries.

While we have not presented the results in this paper, we note that as an alternative

to using Matlab's PDE Toolbox one could use the mathematical theory of homogenization.

Homogenization [2, 6, 10, 17, 18, 24] combines the oscillatory coeÆcients into an \aver-

age" or \e�ective" thermal conductivity. See [8] and the above cited references for further

information on this approach.
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